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Introduction 

Robotic constructions offer the opportunity to explore a class of cognitively relevant concepts such 
as emerging behaviours, theory of control, etc. The overall aim of our research was to assess the 
suitability of a robotic construction kit for young children (5 to 8-year-olds): could children of this 
age build and program robots on their own? If so, what kind of activities, tools, environments are 
best suited for the task? 

To this end, we focussed on two distinct but parallel approaches: the LEGO MindStorms kit 
was partially redesigned to increase the typologies of possible constructions (through the design of 
new sensors, actuators and pre-assembled mechanical components). A programming language was 
designed that is context specific and extensible, and is therefore capable of facing a range of 
problems that are tightly related to the typologies of activity for which it has been predisposed. This 
chapter provides a description of the theoretical background, the adopted research methodology, the 
evolution of the physical play material, the features of the programming environment, and some 
selected findings of the field-testing. Possible evolutions of the work are outlined, that would enable 
children to build and program robots in less supportive contexts. 

This chapter describes the work carried over within the Construction kits made of Atoms & 
Bits project (CAB) [Askildsen et al, 2001a], whose objective was to explore and investigate the 
relationships and attitudes of young children towards behaving objects. 

The appeal of ideas such as building constructions that expose interactive autonomous 
behaviour to preschool and elementary school children was one aspect at the centre of our research. 
In particular the CAB project strived to: 

• experiment with and validate a methodology which fosters children’s interaction with 
computers through the use of cybernetic constructions; 

• encourage children between four and eight years old to approach and use cybernetic objects 
in play/explore contexts; 

• investigate how the structure of learning processes develops when children encounter and 
experiment directly with multimedia approaches while working with cybernetic 
constructions; 

• explore the possibilities of making the design of the software and the play material suited for 
young children. 

From a functional point of view, the investigation of the relationship between young children 
and cybernetics could be broken down into the areas of play material, software and learning 
background/practice. This structure is reflected in the composition of the CAB consortium. While 
the LEGO Group, Denmark, focused on the play materials, the Istituto per le Tecnologie Didattiche 
(ITD), Italy, investigated and designed programming environments including support material 
[Askildsen et al, 2001b]. The Högskolan för Lärarutbildning och Kommunikation (HLK) at 
Jönköping, Sweden, and the Comune di Reggio Emilia (CRE), Italy, anchored the research efforts 

                                                 
1 This is a revised version (March 2009) of the chapter published in 2004. The main difference is the new set of figures 
coming from the Reggio Emilia field testing [Barchi et al. 2001] 
2 With the contribution of Edith Ackermann, e-mail: edith@media.mit.edu 



2 

to classroom evaluation of the material. They provided cognitive and educational interpretations of 
observed results that led to further improvements to the materials and methodology [CRE, 2001; 
Gustafsson & Lindh, 2001]. 

Constructionism stresses the role that concrete objects play in the complex process of 
knowledge construction [Papert, 1980, 1993; Harel & Papert, 1991; Turkle & Papert, 1992]. The 
traditional operational and experiential approach of learning by doing [Dewey, 1910] is therefore 
re-interpreted unfolding the potential that the construction of objects has for learning: knowledge 
emerges as a result of an active engagement with the world through the creation and manipulation 
of artefacts (tangible or not), e.g. sand castles, computer programs, LEGO constructions etc., that 
have relevant personal meaning and, above all, are objects to think with. Similarly important is the 
negotiation of meaning in the social world, considered as a crucial component of children’s 
cognitive development: learning and intelligence emerge in the social groups where individuals 
interact and collaborate to build a common body of shared knowledge. Children act together with 
pairs and with older subjects, who can provide support and motivation in coping with new cognitive 
tasks [Resnick, 1996]. In the constructionist framework computer programming has always played a 
special role, as it is considered a tool to “think about thinking”. But what is the meaning of 
“programming”? There is no simple answer to this question. Programming can be many things to 
many people, and not everyone agrees on its potential to foster human learning and development. 
To some, programming is about writing code, while to others it is a way of thinking [Papert, 1980]. 
Some perceive its potential in helping children sharpen their thinking, or become better “scientists” 
[Resnick et al, 2000], while others stress its ability to foster human creativity [Edwards et al, 1998], 
and enhance self-expression [Maeda, 2000]. 

Programming is a Pygmalion of sorts: it becomes what you want it to be. To a scientist, for 
example, it turns into a tool to master the world (through simulation). To a poet, it serves to create 
fiction, or build a virtual world. Designers use it as a dynamic modelling tool. Literary critics see it 
as a new form of literacy. And for the developmental psychologist the “hidden” value of 
programming lays primarily, and not surprisingly, in its ability to promote the exploration, 
expression, and reflection of children’s “budding” selves-in-relation [Ackermann, 2000]. Thanks to 
their programmability and inspectionability, robots and programmable bricks are among digital 
toys that today offer specially interesting features. They impact on the way of thinking to life, as 
they position themselves on the boundary between the animate and the inanimate [Turkle, 1995]. 
Toys that actually behave elicit novel ways of exploring relational issues, like agency and identity. 
Their hybrid nature makes it possible to play out the fine line between objectifying minds and 
animating things, and come to grips with the hardships that identity formation involves 
[Ackermann, 2000]. 

Cybernetic construction kits, conjugating the physical building of artefacts with their 
programming, can foster the development of new ways of thinking [Resnick et al, 1996] that 
encourage new reflections on the relationship between life and technology [Martin et al, 2000], 
between science and its experimental toolset [Resnick et al, 2000], between robot design and values 
and identity [Bers & Urrea, 2000]. As constructionism supporters argue, thanks to these objects 
many concepts that are usually considered prerogative of adults, who can deal with symbolic and 
abstract knowledge, are made accessible and comprehensible for children as well [Resnick et al, 
1998; Resnick, 1998]. 

The research methodology 

Cybernetic construction kits are nowadays absent from the practices and culture of young children. 
Papert himself suggests that the programmable brick can be used by preschool children [Papert, 
2000], but the available material is currently not adequate for this age. We had to choose whether to 
redesign the material first (designing for children) or to involve the children from the beginning in 
our development effort (designing with children). We chose the latter option, beginning with the 
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LEGO® MINDSTORMS™ Robotic Invention System that was commercialised at the same time the 
project started. This allowed us to provide the schools involved in the project with stable and 
reliable material; however, we were aware that such material would not be suitable for autonomous 
use by children. 
This decision posed us the following questions: what happens when a product that has been 
designed for 12-year-olds becomes an educational object for 5-year-olds? How could such a choice 
be legitimated at the pedagogical level? What has to be done to remove the factors that limit the 
accessibility to technology? 

For the whole experimental phase, which lasted two years, we chose to include the children’s 
activities with the programmable brick into the context and practice of everyday work. We followed 
the Reggio approach to early-childhood education: special attention is paid to the development of 
meaningful learning contexts that facilitates the children’s work; activities are situated within 
projects that address a broad range of issues over an extended period of time; adults try to avoid 
acting invasively and yet know how to listen and document what goes on, striving to sustain the 
children’s motivation [Malaguzzi, 1998]. 

The rationale of the experimental activities is therefore twofold: on the one hand, we consider 
the cognitive potential of toys as deeply anchored to the usage context and culture that give them 
meaning. On the other hand, learning is seen as a social and contextualized process in which 
children receive support and scaffolding from adults in their exploration activities. The role of the 
teacher, as a mediator of knowledge and skills, was crucial for coping with the shortcomings of the 
available technology for this age group. The teachers also engaged in the documentation of 
children’s activities as an integral part of their everyday work [Rinaldi, 1998]. This documentation, 
produced in a variety of formats (texts, images, video, etc.), was made available to the entire CAB 
community (Fig. 1). 

 

  
Figure 1: documentation containing the words of the children and teachers, drawings of the 
children’s hypotheses and photographs both on text and on the project web site 

 
The reflections and interpretations adults made on the issues that emerged from the work with 

the children, made it possible to consider the “theories”, albeit provisional, the children had 
developed during their experiments with LEGO MindStorms and with the subsequent versions of 
the construction kit (Fig. 2). Our aim was to collect descriptive and narrative accounts of what 
happened in the encounters between the children and the construction kit, and note how the 
situation developed. We saw the documentation as a process of reflection and elaboration, that 
enabled us to elicit from the children the requirements for the evolution of the LEGO kit. The 
LEGO kit was incrementally modified according to these requirements through an iterative process. 
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“When the sunlight goes in the sensor, I think it 
shrinks to get in…inside the sensor these little 

yellow balls get smaller and then the light 
becomes a voice because the wire that connects 

the sensor to the RCX works really hard.” 
 

“When the sunlight goes in the RCX and the 
tape recorder, it gets specialised; when it 

becomes the voice there’s a little bit of the 
sunlight that’s left.” 

 
Figure 2: A fragment of a child theory on the inner working of the first version of the “Giving 
another life” project (see the description of the project in the case studies section). 

Evolution of the play material 

A typical LEGO construction contains some parts that are essential for its stability, some that 
provide extra abilities, and some that are purely decorative and meant to give the construction a 
certain character. To provide the best possible set of basic components in a construction kit a 
balance needs to be stricken in the granularity of the components, maximizing freedom in what can 
be constructed and at the same time minimizing the intrinsic complexity. This is the trade-off 
between specific/powerful and generic/open-ended components. In the field-testing most objects 
had to be designed and constructed by the teachers, thereby diminishing the meaning for the 
children of the constructions. The problems encountered can be clustered into three categories: 1) 
the complexity of the LEGO Technic mechanical subsystem; 2) the opaque design of sensors and 
actuators; 3) the bias of the LEGO MindStorms kit toward mobile robots. 
 

 

 

Figure 3: Subassemblies - a vehicle chassis and a pluggable module with two contact sensors. 
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The mechanical subsystem 
LEGO Technic is a very flexible and powerful mechanical kit that enables experts to build complex 
robotic constructions. A rich body of literature is devoted to support adult users in mastering the 
complexity of this system [Martin, 1995; Ferrari & Ferrari, 2001] 

Our approach was to identify and build pre-assembled mechanical modules aimed at 
improving children’s autonomy in using the kit. Such subassemblies (Fig. 3) include a standard, 
ready-to-use vehicle chassis; a locomotion system with caterpillars; a structure to host a pair of 
contact sensors, to be used on a variety of vehicles; a conveyor belt; a motorized rotating cradle 
hosting the programmable brick. 

This choice allowed children to include complex mechanics in their constructions, at the cost 
of restricting the creative exploration of the material (see Fig. 4). 

 

  
 
Figure 4: vehicles assembled by the children for the “Giving another life” and “Cybernetic 
adventures” projects. 
 

A better mechanic system for children should not start at the level of gears and axles; rather, it 
should abstract the different types of motions and make them combinable. The children could be 
provided with small modules that embed mechanical gear designs. This would allow them to 
investigate and apply a range of mechanisms, e.g. produce radial lever movements or translate high-
torque rotation into faster low-torque, without having to build them from scratch. 

Types of constructions 
A construction kit, depending on the components it offers, inevitably favours some types of activity 
and hinders other types, thus imposing an implicit bias on the typologies of allowed constructions. 
The LEGO MindStorms kit is designed to favour the construction of vehicles, mobile robots that 
interact with the environment. In order to encourage the development of other usage scenarios 
further construction types were identified: “kinetic sculptures” (the robot has moving mechanical 
parts, although not necessarily does it move around); “animated constructions” (the robot features 
reactive behaviour using sound, light, messages etc.); “cybernetic soft toys” (similar to Furbies, but 
easy to inspect and modify). Not all these proposals earned the children’s and teachers’ favour; 
some required a review and revision cycle or even abandonment. This was true of cybernetic soft 
toys (Fig. 5), which raised more perplexity rather than acceptance among teachers, who were afraid 
to offer a pedagogically poor proposal. 
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Figure 5: A soft toy that will play back a recorded message when it hears something and play 
different sounds when somebody bends its antennas. 

 
The use of typologies other than vehicles reduces the need of complex mechanical 

constructions and allows for the exploration of reactive behaviours that fit, for instance, in story 
telling, where we have observed children combine a variety of building material (LEGO, paper, 
fabric, clay). In these scenarios the reduced mechanical complexity lets children express their 
creativity and address the behaviour definition early in the construction process. 

The design of active components: sensors and actuators 
From the discussion about construction types the need emerged to define additional sensors and 
actuators components. For example, children love to add recorded voice and sound to their 
computer-made artefacts. Accordingly, we designed and prototyped a tiny digital recorder that 
could “give voice” to the robots. 

Other added components include: a light chain, a bend sensor, a sound sensor and an infrared 
transmitter. Having a variety of components each with its peculiar properties raises the issue of its 
readability: during the field-testing teachers often reported the difficulty to explore the features of 
sensors and actuators, as the components did not communicate their functionality to the children. 
Following each phase of the field-testing, discussions regarding proposals for more evocative and 
communicative materials led to suggestions for the improvement of their design. It would be 
desirable for sensors to be active: i.e., a sound sensor (microphone) could glow with differing 
intensity depending on the volume of sound it detects. The idea is to endow sensors with LEDs 
arranged in a line acting as a visual gauge (fig. 6). This solution would provide the children with a 
concrete reference level: as the sound rises in loudness they would see an increased glow of the 
LEDs. This would be a step forward from the abstract numerical representation of sensor values that 
is currently displayed on the programmable brick. 

 

 

Figure 6: The sound sensor prototype and a sketch of the proposed LED gauge. 
 



7 

Looking at design-functionality, we opted for an operational interface that was independent of 
the programmable brick. Our recorder prototype (fig. 7) allows for the recording of two short 
messages; a button for recording and another two for playing the sounds are placed on the recorder 
itself. 

 
Figure 7: Listening to a message recorded on our prototype. 

 
The experiments with the children, however, showed that they wanted both more and longer 

messages. One might privilege the interface transparency by associating just one component to each 
message: if longer messages are needed, one might always sequentially connect several recorders 
[Ananny, 2001]. Such an approach allows for a story to be assembled by manipulating the order the 
various recorders are linked together. This enables complex interactions among sensors and sound 
sequences: for instance children could build a “sound wall” that emits different sequences if the 
temperature rises above a certain level, if someone touches a hot-spot or if two bricks exchange a 
message. If the same features were to be available for vehicles, practical constraints would emerge 
on the weight and size of components, thus inducing the design of a single, smaller recorder, at the 
price of some opacity of its interface. 

Building the robot’s behaviour 

Putting in the children’s hands the tools to program the behaviour of a cybernetic construction is 
often questioned since programming is not easy and many believe it should be left to specialists. If 
this were true, we should abandon the idea of a construction kit, and limit ourselves to the design of 
cybernetic toys whose behaviour, although highly interactive, could not be modified by children. 
On the contrary, we believe that a kind of programming is indeed possible also for non-
programmers, provided that it is supported by problem-specific tools (environment, language etc.). 

The development of tools that make programming for specific problem solving accessible to 
people who are not particularly experienced – nor interested – in computer science is a thriving 
research area. In particular the work done by Bonnie Nardi (1993) shows that users who are expert 
in a specific domain – or who are interested in practicing it – can learn and manage formal 
languages relevant to that domain. Significant examples are tools such as spreadsheets or statistical 
analysis packages, which provide the user with a programming language useful to extend the 
system functionality. Tools of this type allow for the growth of a user population who, at various 
skill levels, benefit from the available programming functions. 

To apply similar considerations to the children world we have to assume that they can manage 
the level of complexity implicit in the control of robot behaviour. So, it makes sense to set up a 
programming environment for children. In the CAB framework we have verified that children can 
indeed deal with robotic constructions, provided that the context is well structured. 

What is the conceptual model that best supports the definition of robot behaviour? Let us start 
with a sample task: make a vehicle turn around a square-based obstacle. A beginner would probably 
think in terms of driving a car via a remote control, devising a solution in the imperative 
programming style of the Logo turtle: “Go straight on along one side of the obstacle”, “Turn left 90 
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degrees” and “Repeat these two instructions for the other three sides”. However, robots are 
endowed with sensors that “perceive” the surrounding environment and allow them to react 
accordingly: programming a robot thus entails handling a number of sensors at the same time. The 
imperative programming style that is adequate for a broad range of situations (scientific 
computation, accounting, etc.) is inadequate for robot programming [Resnick, 1991; Papert, 1993]. 

If we add a touch sensor to our vehicle, for instance, we can address the problem in a radically 
different way: we can simulate the behaviour of a person who, in the darkness, has to 
circumnavigate an obstacle following its contour by hand. The program is built by relating the data 
coming from the sensors with the commands to the motors. A robot which “touches” the wall as it 
goes on is hard to build with LEGO pieces; it is easier to make the vehicle oscillate bouncing in a 
zigzag fashion: the robot moves away from the wall when the sensor touches it and re-approaches it 
when the sensor loses the contact. In other words: “if the sensor touches, turn on the motor on its 
side and turn off the one on the other side; if the sensor does not touch, turn its motor off and on the 
other one”. 

A solution of this kind offers a number of advantages against the imperative approach: the 
behaviour emerges from the interaction between the robot and the obstacle, independently from the 
shape and size of the latter. Besides, this approach allows, with minimal morphological changes, for 
the solution of other problems. For instance, should we want the robot to follow a line on the floor, 
it would be enough to replace the touch sensor with a light sensor while keeping the same program 
structure: the robot will zigzag along the line contour. In all these cases, rather than representing the 
map of the world in the program, it is the “playing field” that works as the map of itself [Brooks, 
1991]. In cases where the environment properties (the shape and size of the obstacle, the geometry 
of the line, etc.) are not known in advance the robot has to exhibit a level of adaptivity that can only 
be obtained through the use of sensors. 

Domain orientation 
We chose to represent the behaviour of a robot via a set of rules. A rule associates a condition (a 
test on the state of a sensor) to a sequence of actions (commands for the actuators), e.g. if the light 
sensor finds a high value of brightness then turn the motor on. The ease of using this rule system 
depends on the availability of conditions and actions that encapsulate the hardware details and are 
directly operational. The usability of conditions and actions in turn relies on assumptions on the 
type of construction. For instance, a vehicle with two motors can move forward and back, rotate left 
and right. Thus, turtle-like commands are provided for vehicles. For each construction type of 
which the programming environment is aware, a set of primitives is defined, that specialize the 
available functions to the problem at hand. 

The overall behaviour of a construction emerges from the composition of simple behaviours 
that act concurrently. For example, a vehicle with touch sensors that moves in reaction to obstacles 
can be controlled by two behaviours. The first instructs the vehicle to move forward; when it 
touches an obstacle a second behaviour tells the robot to move back and turn in the direction 
opposite to the side of the collision. 

Behaviours can be constructed and tested incrementally. If two or more behaviours are in 
charge of the same actuator, a priority mechanism decides which one is in control. In the last 
example, the behaviour that manages bumps has a higher priority than the one that moves the 
vehicle forward. 

The programming environment presents a gallery of the existing projects and the possibility to 
start a new one. A project is composed of one or more constructions, and encompasses both the 
programs and a multimedia documentation of the children’s work. The environment allows defining 
various types of construction to support the specialization of programming components (behaviours, 
conditions, actions). A construction type makes certain assumptions on its mechanical components. 
A vehicle has a chassis equipped with two motors and is capable of moving and steering. When 
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equipped with suitable sensors a vehicle can execute a range of built-in behaviours like “follow a 
line”, “search for light”, “follow a wall”, etc. 

 

 
 

Figure 8: A schematic representation of a vehicle with two touch sensors. The behaviour menu is 
selected, allowing the choice among the available behaviours that match the construction input and 
output set, or the definition of a new one. 

 
The environment is capable of suggesting the possible available behaviours depending on the 

sensors used in a given construction (Fig. 8). When defining a new behaviour, only the conditions 
and actions that match the current hardware configuration are presented (Fig. 9). Thanks to this 
specialization mechanism, it is possible to let the environment evolve according to specific needs of 
a project. 

 
 

Figure 9: The two rules that define the “bump” behaviour. Note that only the conditions and 
actions associated with the selected input and output devices are shown. 
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Tangible programming 
A key challenge has been to empower children to construct programs their own programs out of 
physical components as they do with LEGO bricks. Tangible programming [Suzuki & Kato, 1995] 
is an active field of research where many projects aim at young children [McNerney, 1999; Wyeth 
& Wyeth, 2001; Montemayor et al, 2002]. The benefits of a tangible interface are twofold: 
• it enables a small group of children to build programs together – unlike when using a screen-

based programming environment because only one child at time can be in control of the mouse 
or keyboard; 

• children can take advantage of the dexterity of their hands - in a graphical user interface objects 
are manipulated via a mouse or other suitable pointing devices. 

Given the age of our target group even small advantages are of value. A tangible version of 
the CAB programming environment, where behaviours, conditions and actions are themselves 
physical manipulative components of the kit, could realize the vision of mixing Atoms and Bits in a 
concrete and child friendly way. Fig. 4 provides an illustration of how this could be done using 
existing technology. The tiles contain electronics components with their ID and once connected are 
capable of communicating their topology [Gorbet et al, 1998]. A tiles dock reads the tiles 
configuration, generates a program and downloads it into the programmable brick. The dock also 
communicates with a computer to connect the tangible interface with the one on the screen. The kit 
can be extended redefining the meaning of a tile (Fig. 10). 

 
Figure 10: A tangible programming version of the bump behaviour. The tiles’ dock is annotated 
with labels indicating its features: a) conditions and actions tiles can be connected to this side of 
the dock to define a rule; b) the current rule can be used to define a new behaviour inserted in this 
slot, behaviours can be connected directly to this side; c) a communication device; d) an additional 
slot to redefine the meaning of a tile.  

 



11 

The computer would still offer distinct advantages, for example in storing and documenting 
previous work or exchanging behaviours at a distance, but would not be required to start a project. 

Metacognitive and social support 
We feel that software which can retain a memory of the product and process of the children’s 
programming by means of the visibility of trials, tests, errors, and variations, can offer opportunities 
for learning. And not only for the children who created the programme, but also for the other 
children involved. Such software can thus become, through metacognitive processes, knowledge 
that can be re-applied and re-used. [CRE, 2000a] 
 

  
Figure11: A ‘digital photo album’ easy and intuitive for the children to consult and which 
encouraged them to revisit and reinterpret their learning experiences. 
 

Formalizing the behaviour of a robot by means of rules has important cognitive and 
metacognitive implications. On the one hand, the rule reifies the cause-effect relationship and 
supplies the children with an important linguistic instrument to talk about and reflect on reactive 
behaviours (“If the temperature increases then the robot turns on the fan”). On the other hand, the 
immediacy of interpretation and the readability of the rules allow the children to revisit their 
problem solving approaches (“… then we added this rule to teach the robot to turn on the fan when 
it’s hot …”). This is especially useful when their programs do not produce the expected results. 
Typically, children prefigure a wide and articulate context, with many actors involved, where their 
fantasies shape up and evolve. Therefore, a project needs ways of supporting the memory of the 
work done, both for documentation purposes and as a representation of the history of the 
programming and building choices (Fig. 11 & 12). 

 

  
Figure12: Use of the video projector to construct “zones of dialogue” among the children, zones 
that are difficult to create around the small monitors of the computer. 
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Moreover, the environment assumes a social context of use that is articulated on three roles: 
children, teachers, experts. 
 

• The children collaborate among themselves and with teachers in all phases of the project, 
from the identification of the problem to the invention of a solution. They discuss and 
compare possible alternatives, inspect examples and modify them to suite their needs; they 
explore the potential and the limits of the technology; they are engaged in an iterative 
process of socially shared construction in which the hypotheses that emerge are subject to 
the judgment of the group and to empirical verification. 

 
• The teachers mediate between children and technology to smooth the interaction and 

support the children creativity and motivation. Some of the options of the programming 
environment enable the teacher to configure it for specific project requirements. They can 
change the icons and names of the objects (actions, conditions, behaviours), and tune the 
parameters of actions (e.g., the scale factors of commands such as: forward; wait, etc.) and 
conditions (the thresholds of sensors). 

 
• The experts can extend the environment adding the definition of new construction types, 

actions and conditions. 

Case studies 

The project field-testing covered two school years and involved three infant schools of the Reggio 
Emilia Municipality and three elementary schools in Sweden. For an in-depth description we refer 
to the final reports of CAB’s educational partners [CRE 2001; Gustafsson and Lindh, 2001]. Here, 
our objective is to focus on how the research in the classroom has influenced the design of a 
programming environment usable by five-year-old children. So, we limit our case studies only to 
projects made in the Reggio infant schools. The following three projects show that: 

• there are no cognitive obstacles to children programming of cybernetic creatures; 
• in the presence of a well defined context and specialised tools, children are capable of 

programming a robot; 
• to support children’s projects the programming environment must provide powerful, specific 

primitives; 
• the proposed environment was usable thanks to its appeal, the appropriate nature of its 

granularity, inspectability and suitability for being an object of discussion and reflection. 

RoboSports 
A group of children of the “La Villetta” infant school has experimented with the RoboSports kit. 
This system was especially developed for the visitors of LEGOLAND Parks and allows them to 
quickly participate into a robot contest. This kit comprises a playing field for two teams to compete 
in making a vehicle that carries as many balls as possible in a hole. The field is a table with two 
tracks each composed of one black line and one back-lighted hole. The mechanical components are 
specialized, thus allowing the construction of a limited set of vehicles capable of transporting and 
pushing the balls into the hole. The software environment supplies primitives such as: a “follow-
the-line” behaviour, a condition that can be used to stop it when the light sensor detects a back-
light, translation and rotation commands to push the balls in the hole. The kit comes with video 
tutorials to help the users build and program the vehicles. At “La Villetta” school parents and 
teachers have built the playing field and the children have set up and programmed their vehicles for 
the contest (Fig 13). 
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Figure 13: RoboSports software and playing field. 
 

This experience has demonstrated that the children succeed in using the features of the 
programming environment to solve the problem, because the specialization of the components 
simplified the construction of a vehicle suited to the task, and the visual programming environment 
that supplies only a limited, but powerful, set of primitives enabled the children to compose the 
program autonomously. Moreover, when engaged in group discussions to overcome programming 
errors, they spoke in terms of the icons of the programming language to annotate the playing field 
(Fig. 14), as a symbolic representation of the program execution, when discussing the effects of the 
instructions given to their robots [CRE, 2000b]. 

  

Figure 14: Children annotating the playing field. 
 

RoboSports is a good example of the potentialities of a context-oriented system. Its limit 
comes from being too specialized: the hardware and software components can only be used for this 
contest, or contests of this type, thus limiting children’s creativity. 

Cybernetic adventures 
The widespread interest shown in monsters, by a class of children in the Neruda school over several 
years provoked the idea of constructing a scenario (Fig. 15) where the different identities of single 
cybernetic subjects and the characteristics of the context would allow the creation of a ‘possible 
life’. This life would develop and evolve according to the frequency and quality of relations 
between the ‘actors’ (monsters or defenders of the city) [Barchi et al, 2001]. 
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Figure 15: Monster and defender scenario planning. 

 
The monsters attacked a city; the inhabitants constructed walls and traps to defend themselves 

and organized a team of defenders to hold back the monsters (Fig. 16). The monsters and the 
defenders have been constructed with defined behaviours that reflected the dynamics of a battle 
whose evolution and outcomes are unpredictable. Each monster was equipped with two touch 
sensors used to avoid obstacles and a light sensor pointing to the floor, to stop the vehicle if it enters 
a coloured zone. The monsters had a light mounted on the back that makes them recognizable by 
the defenders. The defenders had a light sensor allowing them to move in the direction of the attack. 
 

 
 
Figure 16: First version of the scenario. 

 
This first definition of the behaviours was such that, after colliding, the monsters and the 

defenders wandered over the playing field without a clear objective. A monster accidentally ended 
in the trap or succeeded to enter in the city; the defenders rambled without a clear strategy of how to 
block the monsters that they encountered. The children recognized these limits and proposed 
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alternatives, but the teachers could not implement the proposed mechanisms of attraction between 
the defenders and the monsters, and between the monsters and the city. So the experts were called 
in. They proposed two modifications to the project: to introduce tracks of a different colour showing 
to the monster the direction to arrive at the city doors, and a modification of the program of the 
defenders, activating a mechanism for seeking the monster (i.e., turn around and detect the direction 
of light). These proposals were discussed with the children, who modified the scenario (Fig. 17) and 
the robots so as to obtain the desired behaviours. 

 

 
 
Figure 17: Modified scenario. 

 
This project work has covered a long period over several phases: designing and realising the 

scenario, programming and experimentation, modifying the behaviours. By participating as design 
experts, the authors of this chapter ascertained the following: 

• it is possible to capture the complexity of projects of this type in the proposed model; 
• complex behaviours such as those exemplified by this project cannot be develop by children 

on their own, but they can become part of a repertoire of specialized components that 
children can evaluate and apply. 

This style of interaction with cybernetic objects can be defined as “playing the psychologist” 
[Ackermann, 1991]. "Playing the psychologist" and "Playing the engineer" constitute the two ends 
of the spectrum of possible roles that children can adopt when they interact with a cybernetic 
construction kit. In the former, children observe and ask themselves questions on the nature of the 
object at hand (on its intentions, "intelligence", etc.), so as to understand its intimate nature; in the 
latter the construction and modification activities of the objects and their behaviours prevail. The 
children keep oscillating from one to another, and the psychologist and engineer components are 
calibrated and arranged as various degrees of breakdown occur. 
 



Figure 18: First version of the “Giving another life” project. 
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Giving another life 
 

This project originated in the 1999/2000 school year at the Villetta infant school (fig. 18): 
“… from a group of five and six-year-old children who wished to help a large branch that 
had broken off from a tree due to a heavy snowfall. The children were well aware that they 
could create ‘another kind of life’ for the plant, which had now been sheltered in the school 
piazza. The children placed the digital tools and materials in relation with the sensors and 
actuators which they thought were most suited to allow the different subjects to 
communicate, and with other languages and materials (paper, wire, clay, structures built 
with recycled materials, etc.) that are a common feature of school life. The children’s 
narration was the bond that held together the different levels at which the research was being 
conducted, constructing meanings, even provisional ones, and identifying new questions to 
be investigated” [CRE, 2000b]. 
 

  
 

Figure 19: Children exploring the branch tree project developed the previous school year. 
 

The following school year (2000/2001), another group of five and six-year-old children (Fig. 
19) extended the project by adding a dialogue between a bird on the tree and its robot friend. During 
winter food supplies are scarce. The bird asks for the help of robot baker-boy that will bring crumbs 
to the tree. Once there, the robot will notify its friend, who will come down for the bread (Fig. 20). 

Because of growing-up in a school where cybernetic constructions were just one of the things 
on offer, the second group of children found it natural to construct their robots and program them 
with the visual environment previously described. Here is how they summarized their 
understanding at the end of the project: 

 
o “Now we’re real robot programmers!” 
o  “It’s true! This is a school of programmers! We can do all sorts of things!” 
o “We discovered three secrets: 

1) two pieces of the measuring stick make one tile; 
2) if the bird touches the bend sensor, the recorder goes ‘cheep, cheep’; 
3) robots can talk to each other with the envelope and the letter box.” 

[CRE, 2001] 
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A bird touches the bend sensor... 

...and immediately the “bread-
carrier” robot starts off and goes to 

the tray. 

 

 

Then the bird comes down from 
the nest and... 

 

 

 
Figure20: The proposed project extension. 
 

The children solved a number of sub-tasks generated by the evolution of their work. One was 
to determine the value for the “forward” command to let the robot move 6 tiles on the floor. To this 
end the children built a measuring stick, marking the distance travelled for various values of the 
parameter for the “forward” command. Experimenting with these values they discovered that “two 
pieces of the measuring stick make one tile” and “forward 12” was the solution to their problem 
(see Fig. 21). The magic number of “two pieces” did not come by accident. The programmable 
brick controls the amount of time the motors are on; how this time correlates to the distance 
travelled is a function of the actual vehicle details (tires, gears, weight, terrain, etc.). The software 
allows specifying a scale factor to tune the result, and the teachers customized it for this project. 

The children built their robots in such a way that they could tell the story of the bird and his 
friend while the robots were playing it out. Synchronization points are essential to a good result. 
The robot should start moving when the bird calls it. An initial solution was to use a sound sensor to 
hear the voice of the bird. Unfortunately a sound sensor picks up noise and does not understand 
language. So, any noise was good enough to trigger the robot behaviour. 
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Figure21: Children building a measuring stick 
 

By inspecting the software interface the children noticed the message icons, tried them out and 
discovered that robots “can talk to each other with the envelope and the letter box”. Exchanging 
messages provided a robust mechanism for synchronization, thus enabling the children to complete 
their project (see Fig. 22). 
 

 
Figure22: The children discover that the RCX can exchange messages. 
 

 
 
Figure23: The program for the bread carrier robot. 
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In the upper left corner of fig. 23 three sensors are shown: the message receiver (active), and a 

sound and a light sensor that are left over from previous design approaches. To move forward 12, 
the children used two commands (10 + 2) as the interface provides a slider (not shown in Fig. 23) 
that limits the parameter values to the range [0 .. 10]. 

The software interface does attempt to reveal what is possible with the programmable brick, 
by organizing the available features into boxes that contain components of the same type (Fig. 9). 
Furthermore, the structure of boxes reflects a concrete vs. virtual distinction: tangible sensors and 
actuators, built-in devices (i.e., sound and messages, which are not associated to a pluggable 
hardware component) and virtual devices (i.e., those implemented via software: timers, counters). 
This taxonomy is reflected into the operational structure of the interface that supports children while 
exploring, discovering and learning the available features. 

Conclusions 

We based our work on the notion of a competent child who can pursue difficult projects for 
extended periods of time in a supportive learning environment. We assumed that children would be 
interested in building their own animated constructions and programming their behaviours. The 
CAB project has shown that, in a supportive learning environment, children can and will design and 
build animated construction behaviours. We have proposed and prototyped a visual programming 
language that is not general purpose but rather strives for simplicity and power by incorporating 
knowledge of the construction types and the specificity of the project at hand. 

A cybernetic construction kit endowed with a tangible programming interface and redesigned, 
to improve its mechanical system and the readability of active components, should enable children 
to explore the material freely and autonomously (without the need for external “experts”) while 
engaging in motivating projects. 
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